ES 246 : Advanced Image Processing Final Project

YOLOVS Object Detection
Android App

by
Aakash Sunil Shedsale
SR No.: 22275

Motivation

* Real-time Object Detection: YOLO is known for its ability to perform real-time
object detection with impressive speed and accuracy. Traditional or RCNN based
object detection algorithms cannot be used in real-time object detection because
of low speed.

* Accessibility and Convenience: By deploying YOLO on Android devices, users can
perform real-time object detection tasks without relying on internet connectivity
or cloud-based services. This enhances accessibility and convenience, especially
in scenarios where real-time processing is crucial or where network connectivity
is limited.

* On-device Processing: Running object detection algorithms directly on Android
devices enables on-device processing, eliminating the need to upload sensitive
data to external servers for processing. This enhances privacy and security by
keeping data local to the device.

YOLOvVS Training

e Dataset: PASCAL-VOC, # train images: 16551, # val images: 4952, #
classes: 20

* Input size: (1,3,640,640); Output size: (1,25200,25)
* Performance on validation set after training for 100 epochs:

Class il Instances mAPS@ mMAPS8-95 3

all 12632 '

aeroplane 285
bicycle
bird
boat
bottle
bus

car 1261

cat 358

chair 756

& W0 & g
AR

2y e

COow 244
diningtable 206

I

dog]
horse
motorbike
person
pottedplant
sheep

sofa

train
tvmonitor

Lo
P P

& 0O Wi o

®

v I [

WK NN
w I o TR W S 4
MO N
& &

Y Y % %
& &

®
[w]
®

Model conversion: from .pt to .ptl

* Required to remove dependence of model from python runtime environment
* Model summary: 157 layers, 7064065 parameters, 15.9 GFLOPs

* Procedure followed for conversion:

Algorithm 1 Trace and Save YOLOv5 Model for Mobile Deployment
Require: Configuration (config), Example input
Ensure: Traced YOLOv5S model saved to a file for mobile deployment

1: Initialization: Initialize YOLOv5 model with desired configuration (con-

fig) model + YOLOv5(config)

2: Load Pretrained Model Weights: Load pretrained weights from a file

MODEL.LOAD_STATE_DICT(*weighths.pt”)

3: Set Evaluation Mode: model.eval()

1: Define Example Input: Define example input of type and size same as the
model input input + RANDOM_ARRAY_OF_FLOATS(model.input_size)
Create Trace: Create a trace of the model using TORCH.JIT.TRACE
traced_model + TORCH.JIT.TRACE(model, input)

6: Optimize For Mobile: Optimize the traced model for mohile deploy-
ment using TORCH.UTILS.MOBILE_OPTIMIZER optimized_model +
TORCH.UTILS.MOBILE_OPTIMIZER.OPTIMIZE_FOR_MOBILE(traced_model)
Export mobile interpreter version model: Export the
optimized model compatible with mobile interpreter opti-
mized model. SAVE_FOR_LITE_INTERPRETER(“model.pt]”)

* Original model size: 13.7 MB, Exported model size: 27.1 MB

[}

=]

Android app

o .apk file size: 225.88 MB

e Link to demo: Here

Select Live Select Live

https://indianinstituteofscience-my.sharepoint.com/:v:/g/personal/aakashsunil_iisc_ac_in/EY1q9J1v6gNAjl5vfGL7E-0BZLDpX1gfdL-bfbuKk_cmkQ?e=OQcFp7

YOLOVS5 network architecture

* Backbone: CSPDarknet53, SPPF
 Neck: FPN and PAN
* Head: Same as YOLOv4 and YOLOv3

Backhbone

5/32 €5 P5 ()

RS
P¥°H

C3/8 | M O

C24 | : | {J—‘
Cl2 | .

Input e s (BBoxes |

Backbone: CSPDarknet53

160 x 160 =< 128

v . i
ConvBNSIiLU ConvBNSILU C3
k1, s1, p0, cG4 k1, s1, p0, c64 '

l

BottleNeck 1 ¥ 3

|

- Concat

W
ConvBNSILU
k1, s1, p0, c128

b ez |
Cross Stage Partial Network is used to:

i. Strengthen feature propagation
ii. Alleviate the vanishing gradient problem
iii. Encourage the network to reuse features

iv. Reduce the number of network parameters

Backbone: SPPF

 Spatial pyramid pooling (SPP): Captures information from different
spatial scales. SPPF is faster version of SPP.

MaxPool2d MaxPool2d |, MaxPool2d ConvBNSILU SPPF:
k5, s1, p2 k5, s1, p2 X k5, s1, p2 k1, s1, p0, 512 !

h 4

Concat

¥y v

Y
ConvBNSILU
k1, s1, p0, c1024

Neck: FPN and PAN

* FPN: Feature pyramid network
* PAN: Path aggregation network

—

Head

* YOLOVS uses the same head as YOLOv3 and YOLOV4.

* Itis composed from three convolution layers and fully connected layers that predict the location
of the bounding boxes (x, y, height, width), the confidence scores and the objects classes.

* The equation to compute the target coordinates for the bounding boxes have changed from
previous versions

b = 0(ts) ¢z b= (2-0(ty) — 0.5) + ¢
by =o0(ty) +¢, by=1(2-0(ty) —0.5)+¢,
by = Dy * €™ Dy = Py = [- U(tw)>2
b = pn - €™ by, = pr - (2- 0 (tn))’

(a) (b)

* Qutput size: 3 anchor boxes per grid cell; 3 different scales: 80x80 (P3:640/8), 40x40 (P4:640/16)
and 20x20 (P5:640/32); 3x(80x80 + 40x40 + 20x20) = 25200 bounding boxes; Each bounding box
has (x, y, w, h, pc) + # classes predictions

Loss function

» Uses BCE Loss for classification and objectness loss; CloU loss for
localization

e Total Loss = AL +)\QLUE,J' + A3 Lo
* The objectness losses of the three prediction layers(P3, P4, P5) are
weighted differently = Lo, =4.0- L3 + 1.0 - L5 +0.4 - Ly?*

obj

Challenges Faced

‘Detect’ function available with YOLOvV5 GitHub repo doesn’t accept model in .ptl format
hence cannot validate model on VOC dataset

New to java hence understanding the code taken from GitHub repo to create app and
making changes to it was difficult

* YOLOVS has 10 different release versions

https://github.com/ultralytics/yolov5/releases); When official ultralytics library
provides latest release version(} Is used to train YOLOvV5 model and deploy it in Android
app, many errors occurred; Android app needs release version v6.2

Bug in code taken from GitHub repo to build Android app: Sorts detected confidence
scores in ascending order and preforms non-max suppression which is wrong; code
modified to sort detected confidence scores in descending order

Needed to change versions of few imported android libraries to make code taken from
GitHub repo work

* YOLOVS5 has no official paper hence understanding it required going through different

blogs and articles

https://github.com/ultralytics/yolov5/releases

References

e Code to build Android app is taken from:
https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection

* Blogs and articles to understand YOLOV5:
i. https://blog.roboflow.com/yolov5-improvements-and-evaluation/
ii. https://ig.opengenus.org/yolov5/

. Liu, Halying, et al. "SF-YOLOV5: A lightweight small object detection
algorithm based on improved feature fusion mode." Sensors 22.15
(2022): 5817.

* Blog to know PyTorch model conversion process for mobile

deployment: https://medium.com/@adrian.errea.lopez/from-pytorch-model-
to-mobile-application-50bc5729ed83

13

https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://iq.opengenus.org/yolov5/
https://medium.com/@adrian.errea.lopez/from-pytorch-model-to-mobile-application-50bc5729ed83
https://medium.com/@adrian.errea.lopez/from-pytorch-model-to-mobile-application-50bc5729ed83

Thank
you

	Slide 1: E9 246 : Advanced Image Processing Final Project YOLOv5 Object Detection Android App
	Slide 2: Motivation
	Slide 3: YOLOv5 Training
	Slide 4: Model conversion: from .pt to .ptl
	Slide 5: Android app
	Slide 6: YOLOv5 network architecture
	Slide 7: Backbone: CSPDarknet53
	Slide 8: Backbone: SPPF
	Slide 9: Neck: FPN and PAN
	Slide 10: Head
	Slide 11: Loss function
	Slide 12: Challenges Faced
	Slide 13: References
	Slide 14

