
E9 246 : Advanced Image Processing Final Project

YOLOv5 Object Detection
Android App

by

Aakash Sunil Shedsale

SR No.: 22275

Motivation

• Real-time Object Detection: YOLO is known for its ability to perform real-time
object detection with impressive speed and accuracy. Traditional or RCNN based
object detection algorithms cannot be used in real-time object detection because
of low speed.

• Accessibility and Convenience: By deploying YOLO on Android devices, users can
perform real-time object detection tasks without relying on internet connectivity
or cloud-based services. This enhances accessibility and convenience, especially
in scenarios where real-time processing is crucial or where network connectivity
is limited.

• On-device Processing: Running object detection algorithms directly on Android
devices enables on-device processing, eliminating the need to upload sensitive
data to external servers for processing. This enhances privacy and security by
keeping data local to the device.

2

YOLOv5 Training
• Dataset: PASCAL-VOC, # train images: 16551, # val images: 4952, #

classes: 20

• Input size: (1,3,640,640); Output size: (1,25200,25)

• Performance on validation set after training for 100 epochs:

3

Model conversion: from .pt to .ptl
• Required to remove dependence of model from python runtime environment

• Model summary: 157 layers, 7064065 parameters, 15.9 GFLOPs

• Procedure followed for conversion:

• Original model size: 13.7 MB, Exported model size: 27.1 MB
4

Android app
● App UI:

 ● .apk file size: 225.88 MB

 ● Link to demo: Here

5

https://indianinstituteofscience-my.sharepoint.com/:v:/g/personal/aakashsunil_iisc_ac_in/EY1q9J1v6gNAjl5vfGL7E-0BZLDpX1gfdL-bfbuKk_cmkQ?e=OQcFp7

YOLOv5 network architecture

• Backbone: CSPDarknet53, SPPF

• Neck: FPN and PAN

• Head: Same as YOLOv4 and YOLOv3

6

Backbone: CSPDarknet53

Cross Stage Partial Network is used to:

i. Strengthen feature propagation

ii. Alleviate the vanishing gradient problem

iii. Encourage the network to reuse features

iv. Reduce the number of network parameters

7

Backbone: SPPF

• Spatial pyramid pooling (SPP): Captures information from different
spatial scales. SPPF is faster version of SPP.

8

Neck: FPN and PAN

• FPN: Feature pyramid network

• PAN: Path aggregation network

9

Head
• YOLOv5 uses the same head as YOLOv3 and YOLOv4.

• It is composed from three convolution layers and fully connected layers that predict the location
of the bounding boxes (x, y, height, width), the confidence scores and the objects classes.

• The equation to compute the target coordinates for the bounding boxes have changed from
previous versions

• Output size: 3 anchor boxes per grid cell; 3 different scales: 80x80 (P3:640/8), 40x40 (P4:640/16)
and 20x20 (P5:640/32); 3x(80x80 + 40x40 + 20x20) = 25200 bounding boxes; Each bounding box
has (x, y, w, h, pc) + # classes predictions

10

Loss function

• Uses BCE Loss for classification and objectness loss; CIoU loss for
localization

• Total

• The objectness losses of the three prediction layers(P3, P4, P5) are
weighted differently

11

The objectness losses of the three prediction layers(P3, P4, P5) are weighted differently.

Challenges Faced

• ‘Detect’ function available with YOLOv5 GitHub repo doesn’t accept model in .ptl format
hence cannot validate model on VOC dataset

• New to java hence understanding the code taken from GitHub repo to create app and
making changes to it was difficult

• YOLOv5 has 10 different release versions
(https://github.com/ultralytics/yolov5/releases); When official ultralytics library
(provides latest release version) is used to train YOLOv5 model and deploy it in Android
app, many errors occurred; Android app needs release version v6.2

• Bug in code taken from GitHub repo to build Android app: Sorts detected confidence
scores in ascending order and preforms non-max suppression which is wrong; code
modified to sort detected confidence scores in descending order

• Needed to change versions of few imported android libraries to make code taken from
GitHub repo work

• YOLOv5 has no official paper hence understanding it required going through different
blogs and articles

12

https://github.com/ultralytics/yolov5/releases

References

• Code to build Android app is taken from:
https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection

• Blogs and articles to understand YOLOv5:
i. https://blog.roboflow.com/yolov5-improvements-and-evaluation/

ii. https://iq.opengenus.org/yolov5/

iii. Liu, Haiying, et al. "SF-YOLOv5: A lightweight small object detection
algorithm based on improved feature fusion mode." Sensors 22.15
(2022): 5817.

• Blog to know PyTorch model conversion process for mobile
deployment: https://medium.com/@adrian.errea.lopez/from-pytorch-model-
to-mobile-application-50bc5729ed83

13

https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://iq.opengenus.org/yolov5/
https://medium.com/@adrian.errea.lopez/from-pytorch-model-to-mobile-application-50bc5729ed83
https://medium.com/@adrian.errea.lopez/from-pytorch-model-to-mobile-application-50bc5729ed83

Thank
you

14

	Slide 1: E9 246 : Advanced Image Processing Final Project YOLOv5 Object Detection Android App
	Slide 2: Motivation
	Slide 3: YOLOv5 Training
	Slide 4: Model conversion: from .pt to .ptl
	Slide 5: Android app
	Slide 6: YOLOv5 network architecture
	Slide 7: Backbone: CSPDarknet53
	Slide 8: Backbone: SPPF
	Slide 9: Neck: FPN and PAN
	Slide 10: Head
	Slide 11: Loss function
	Slide 12: Challenges Faced
	Slide 13: References
	Slide 14

