
International Journal of Human–Computer Interaction

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/hihc20

Multivariate Fast Iterative Filtering Based
Automated System for Grasp Motor Imagery
Identification Using EEG Signals

Shivam Sharma, Aakash Shedsale & Rishi Raj Sharma

To cite this article: Shivam Sharma, Aakash Shedsale & Rishi Raj Sharma (20 Nov 2023):
Multivariate Fast Iterative Filtering Based Automated System for Grasp Motor Imagery
Identification Using EEG Signals, International Journal of Human–Computer Interaction, DOI:
10.1080/10447318.2023.2280327

To link to this article:  https://doi.org/10.1080/10447318.2023.2280327

Published online: 20 Nov 2023.

Submit your article to this journal 

Article views: 166

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20

https://www.tandfonline.com/journals/hihc20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10447318.2023.2280327
https://doi.org/10.1080/10447318.2023.2280327
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2023.2280327?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2023.2280327?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2023.2280327&domain=pdf&date_stamp=20%20Nov%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2023.2280327&domain=pdf&date_stamp=20%20Nov%202023
https://www.tandfonline.com/doi/citedby/10.1080/10447318.2023.2280327?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/10447318.2023.2280327?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20


RESEARCH REPORT

Multivariate Fast Iterative Filtering Based Automated System for Grasp Motor 
Imagery Identification Using EEG Signals

Shivam Sharma , Aakash Shedsale, and Rishi Raj Sharma 

Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, India 

ABSTRACT 
One of the most crucial use of hands in daily life is grasping. Sometimes people with neuromuscu-
lar disorders become incapable of moving their hands. This article proposes a grasp motor 
imagery identification approach based on multivariate fast iterative filtering (MFIF). The proposed 
methodology involves the selection of relevant electroencephalogram (EEG) channels based on 
the neurophysiology of the brain. The selected EEG channels have been decomposed into five 
components using MFIF. Information potential based features are extracted from the decomposed 
EEG components. The extracted features are smoothed using a moving average filter. The 
smoothed features are classified using the k-nearest neighbors classifier. The cross-subject classifi-
cation accuracy, precision, and F1-score of 98.25%, 98.31%, and 98.24%, respectively, is obtained. 
While the average classification accuracy, precision and F1-score for multiple subjects is 98.43%, 
98.62%, and 98.41%, respectively. The proposed methodology can be used for the development 
of a low cost EEG based grasp identification system.

KEYWORDS 
Grasp motor imagery; 
electroencephalogram; 
information potential; 
iterative filtering; motor 
imagery   

1. Introduction

Brain–computer interfaces (BCIs) are a type of user interface 
that enables people to interact with computing systems using 
electrical signals produced in the brain, without the need for 
any physical movement (Li et al., 2022; Vasiljevic & De 
Miranda, 2020; Wolpaw et al., 2002). Electrical activity of 
the brain is reflected in electroencephalogram (EEG) signals, 
which is a popular method to record brain dynamics (R. 
Sharma et al., 2021; Urig€uen & Garcia-Zapirain, 2015). The 
mental act of imagining movement without actually per-
forming it is termed as motor imagery (MI). The MI creates 
event-related de-synchronization (ERD) and event-related 
synchronization (ERS) at motor cortex where the power of 
certain frequency bands in EEG decreases during imagin-
ation and increases at the end (Jeon et al., 2011). The dom-
inant frequency bands for MI include mu (8–13 Hz) and 
beta (14–30 Hz) rhythm (Jeon et al., 2011). A MI-based BCI 
is a translator that transforms a user’s motor intention into 
a command for controlling machines that are not powered 
by muscles (B.-S. Lin et al., 2016). The major issues in MI 
based BCI systems involve extraction of efficient features 
and their accurate classification. Lack of thorough and 
empirical understanding are also one of the possible risks 
that BCI technology could pose (King et al., 2022).

Grasping is an intricate process, which requires know-
ledge of oneself, an object to be grasped, and surroundings. 
People with severe neural disorders sometimes lose the abil-
ity to grasp. Myo-electrically controlled prosthetic hands 

cannot be used by people having an increased level of 
amputation (Roy et al., 2017). BCI controlled grasping can 
become a blessing in such cases. Although rehabilitation of 
human grasp from MI is a strenuous task. EEG based on 
MI is used to classify different grasp types in Roy et al. 
(2017). Recently, a few deep learning based approaches to 
decode grasping from EEG are studied in Jain and Kumar 
(2022) and Veres et al. (2017).

The iterative filtering (IF) (L. Lin et al., 2009) algorithm 
is based on empirical mode decomposition (EMD). The 
main difference lies in the way IF computes the signal’s 
moving average. The EMD uses an average of two envelopes 
of given signal whereas IF computes convolution between a 
given signal and a filter with compact support (R. R. 
Sharma et al., 2018). The IF has a strong mathematical 
foundation, which is absent in EMD. The fast iterative filter-
ing (FIF) speeds up the computation of IF algorithm by 
making use of the fast Fourier transform (Cicone & Zhou, 
2021). The multivariate fast iterative filtering (MFIF) extends 
the IF algorithm for multivariate data and inherits all special 
properties of FIF (Cicone & Pellegrino, 2022). MFIF decom-
poses the multivariate signal into oscillatory components in 
a fast and compact way (Cicone & Pellegrino, 2022). MFIF 
does not require any prior assumption about the signal to 
be decomposed as required in other multivariate signal 
decomposition algorithms like multivariate EMD, multivari-
ate variational mode decomposition (VMD), and multivari-
ate empirical wavelet transform (Cicone & Pellegrino, 2022). 
The MFIF is used in Gazagnaire and Beaujean (2021) to 
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determine time-delay for estimating motion. A method to 
determine a cross-correlation between intrinsic modes to 
evaluate scale-dependent lags based on MFIF is proposed in 
Urbar et al. (2022).

In Lee et al. (2019), the performance of various feature 
extraction techniques such as common spatial patterns, 
power spectral density, time domain parameters, and classi-
fication methods were tested for binary, ternary, and quater-
nary MI discrimination. A novel data augmentation 
technique is proposed in Cho et al. (2020) that uses labels 
obtained from the study of electromyogram (EMG) signals 
to boost the amount of training data. A novel EMG assisted 
framework has been proposed in Lange et al. (2016) to cat-
egorize the feasibility of controlling the grasp and release of 
an upper limb prosthetic terminal device. EMG signals may 
be utilized for muscle abnormality analysis (R. R. Sharma 
et al., 2020). Kanuparthi and Turlapaty (2022) proposed a 
two-stage hierarchical approach for reach-grasp actions 
decoding based on the power spectral density features and a 
fine k-nearest neighbor. The action signals are split from 
rest segments using the mean absolute value features and a 
fine k-nearest neighbor (FKNN) classifier. The action signals 
are further divided into palmer and lateral type reach and 
grasp actions. Horki et al. (2011) investigated a control 
approach that uses the beta rebound following the brisk feet 
MI to control the grasp function. A two-class SSVEP-BCI is 
used to control the elbow function of an artificial upper 
limb with 2 degrees-of-freedom. The aim of Ramadhan 
et al. (2019) is to identify a suitable combination for the 
best EEG headset-based right-hand grasp movement classifi-
cation. A method given in S. Sharma and Sharma (2022) 
focuses on finger flexion detection using ECoG signals based 
on VMD and various features such as correntropy, cross- 
information potential, and entropy estimation by 
Kozachenko–Leonenko. In Tobing et al. (2017), a right-hand 
grasp movement classification method is developed, which 
uses independent component analysis with the EEG record-
ings from F3–F4 or FC5–FC6 electrode pairs. Tavakolan 
et al. (2016) proposed a method that is capable of differenti-
ating between several imaginary arm movements, such as 
gripping and elbow flexion and rest. In Mahmoudi and 
Erfanian (2002), based on neural adaptive noise canceller, 
the eye blink artifact is suppressed while multilayer percep-
tron with back-propagation learning rule is used for EEG 
classification. An approach given in Rasheed and Mumtaz 
(2021) aims to serve as a benchmark where authors com-
pared the classical signal processing methods such as wavelet 
transform and power spectral density with MI-specific algo-
rithms and deep neural network-based EEGNet algorithm. 
The functional relationship during mental tasks is repre-
sented using correlation matrix and coherence matrix fea-
tures in Ma et al. (2020). To improve MI decoding of 
various joints from the same limb, an ensemble channel cor-
relation network was designed. A novel feature learning 
method is proposed in Chu et al. (2020) for solving the clas-
sification issue of six-class MI tasks. Tangent space features 
from the spatial covariance matrices of the MI EEG trials 
were directly extracted using the Riemannian geometry 

framework with Riemannian distance and Riemannian 
mean.

With the MI paradigm, authors in Cho et al. (2022) offer 
NeuroGrasp, a dual stage deep learning system that decodes 
multiple hand grabbing from EEG signals. The suggested 
approach successfully applies an EEG and EMG-based learn-
ing, which makes EEG-based inference at the test phase con-
ceivable. In order to increase the overall classification 
accuracy, a novel technique that calculates muscle activity pat-
terns from EEG signals is proposed in Cho et al. (2020). An 
adaptive probabilistic neural network (APNN) was introduced 
in Hazrati and Erfanian (2010) that could provide an excellent 
performance throughout many experiment sessions and sub-
jects. In order to reduce computational complexity in MI 
applications various methods are summarized in Abdullah 
et al. (2022). In Gaur et al. (2022), a novel method is proposed 
to solve MI-based BCI classification problems combining 
logistic regression with tangent space based transfer learning 
(LR-TSTL). Even though the association of EEG and grasp MI 
has been shown by the majority of research, identification pre-
cision still has to be increased. Therefore, we have proposed a 
grasp MI identification approach based on MFIF and informa-
tion potential (IP) based features extraction. The extracted fea-
tures are smoothed by employing a moving average filter to 
obtain the improved accuracy over the existing techniques. 
The proposed method provides comparable cross-subject clas-
sification performance between grasp MI and rest data.

Rest of the article is presented as follows: the dataset 
studied for the proposed methodology is described in Section 
2. The proposed methodology for grasp MI detection is given 
in Section 3. Section 4 discusses results of the proposed meth-
odology. In the end, the article is concluded in Section 5.

2. Dataset description

In this article, we utilize the EEG data for grasp MI from 
Peterson et al. (2022). The dataset contains multichannel 
EEG recordings of 10 right-handed participants (S02, S03, 
S04, S05, S06, S07, S08, S09, S10, and S12) performing MI 
of kinesthetic grasp movement of the dominant hand and 
rest state. The EEG signals were captured from 15 electrodes 
F3, Fz, F4, F8, F7, C3, Cz, C4, P3, Pz, P4, T3, T5, T4, and 
T6 over sensorimotor position following international 10–20 
electrode position at a sampling frequency of 125 Hz. 
During EEG recording, the participants performed each trial 
of grasp MI and rest state for a 4 s duration. The dataset has 
80 trials of grasp MI and 80 trials of rest state for each par-
ticipant except for participant S02 where 75 grasp MI trials 
and 75 rest state trials are available. In the proposed meth-
odology, we have used data for all the 10 participants for 
obtaining the classification accuracy. The link https://open-
neuro.org/datasets/ds003810 provides access to the dataset.

3. Methodology

In the proposed methodology for grasp MI identification, 
the relevant channels are selected based on the neurophysi-
ology of the brain. The EEG data from the selected channels 
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are segmented into separate trials and filtered. The filtered 
trials from the selected channels are decomposed into five 
components using MFIF. The features are extracted from 
the decomposed components and smoothed using a moving 
average filter. The smoothed features are normalized and fed 
to machine learning classifiers. The proposed methodology 
is depicted in Figure 1 and explained next in the current 
section.

3.1. EEG data preprocessing

The EEG recordings are segmented into separate 4 s dur-
ation trials. Based on the neurophysiological characteristics 
of the human brain, two channel subsets C3, Cz, C4 and 
C3, P3, Cz, Pz are selected. The channels C3, Cz, and C4 
are used in MI based BCI systems as these channels record 
electrical activity related to MI (Tiwari & Chaturvedi, 2021). 
According to Mwata-Velu et al. (2021), the channels C3, P3, 
Cz, and Pz can be used for the detection of right-hand MI. 
The proposed methodology is evaluated separately on two 
selected channel subsets. The selected channels are bandpass 
filtered between 8 and 30 Hz band, which corresponds to 
the main oscillatory rhythms of MI (Xu et al., 2014).

3.2. Decomposition of the selected channels using MFIF

MFIF extends the IF algorithm given in Cicone and Zhou 
(2021) for multivariate signals analysis (Cicone & Pellegrino, 
2022). The IF separates different oscillatory components pre-
sent in a signal by approximating its moving average and 
iteratively subtracts it from the signal, which is extended for 
multivariate signals in MFIF. The idea behind the MFIF 
algorithm is to first compute in some way a unique filter 
length (P), which represents half the support length of the 
filter function (F) and then use it to extract the first intrinsic 

mode function (IMF) from each of the N channels separ-
ately through the use of FIF given an N-dimensional signal 
evolving over time s 2 N� (Cicone & Pellegrino, 2022).

In MFIF, the P is decided by taking the double average 
distance of the succeeding extrema in /ðtÞ as follows 
(Cicone & Pellegrino, 2022):

/ðtÞ ¼ arccos
yðtÞ
jjyðtÞjj

:
yðt − 1Þ
jjyðt − 1Þjj

� �

(1) 

where yðtÞ ¼ ½yiðtÞ�i¼1, :::, N is a N-dimensional multivariate 
signal rotating in N as t varies in .

It is highlighted that this approach is greatly intuitive if 
we consider a multivariate IMF as a vector in N revolving 
around the time axis. It is possible to determine the average 
scale of the highest frequency rotations embedded in the 
given signal by computing the double average distance 
between succeeding extrema in /ðtÞ (Cicone & Pellegrino, 
2022).

By assuming that the signal s is sampled over time at M 
points, we can say that s is a matrix in N�M and we can 
represent s ¼ ½y1, y2, :::, yM� where each yj represents column 
vector in N, and

s ¼

v1
v2

..

.

vN

2

6
6
6
4

3

7
7
7
5

(2) 

where each vi represents row vector in M. The pseudo 
code of MFIF is given in Algorithm 1. DFT and iDFT in the 
pseudocode represents discrete Fourier transform and 
inverse DFT, respectively. The IMF value for the ith channel 
at the kth step of the inner loop is represented by vðkÞi and 
its Fourier transform is represented by v̂ðkÞi :

Figure 1. Proposed methodology for grasp motor imagery identification system.
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For the given d > 0, the stopping criterion (SC) can be 
defined as: 9�0 2 N such that (Cicone & Pellegrino, 2022) 

SC ¼ max
i¼1, :::, n

kvðkþ1Þ
i − vðkÞi k2 < d 8kP�0 (3) 

The signal s that is assumed to be periodic at the time 
boundaries, and F derived by convolution of the signal with 
a symmetric filter h. If we fix d > 0 and take the double 
average distance between the function’s succeeding extrema, 
as described in (1), into account as P, then, the SC (3) holds 
true 8k P �0, for the minimum 9�0 2 N, the first IMF is 
given by

IMF ¼ ½iDFT ðI − DÞ�0 DFT vT
i

� �� �T
�i¼1, :::, N (4) 

where D represents diagonal matrix, which contains the 
eigenvalues of the discrete convolution matrix W related 
with F as entries. The W can be expressed as:

W ¼

a0 am−1 � � � a1
a1 a0 � � � a2

..

. . .
. . .

. ..
.

am−1 am−2 � � � a0

2

6
6
6
4

3

7
7
7
5

(5) 

where aj � 0, for j ¼ 0, :::, ðm − 1Þ, and 
Pm−1

j¼0 aj ¼ 1: The 
entries of a selected vector filter w are circularly shifted in 
each row. It is commonly known that this matrix can be 
diagonalized using a unitary matrix U that has the so-called 
Fourier basis as columns.

vp ¼
1
ffiffiffiffi
m
p 1, e−2piq 1

m , :::, e−2piqm−1
m

� �T
(6) 

where q ¼ 0, :::, ðm − 1Þ, and W ¼ UDUT with D is the 
diagonal matrix that contains the eigenvalues of W as 
entries, which are given as:

kq ¼
Xm−1

p¼0
c1pe−2piqp

n (7) 

that are identical to DFT(w). Further, it follows that every 
kq is included in the positive interval [0, 1] given the 
hypotheses on w. Therefore, for every fixed i ¼ 1, :::, n, it 
follows:

vðkÞi − vðkþ1Þ
i ¼ ðI − WÞkvi − ðI − WÞkþ1vi ¼

UðI − DÞkðI − ðI − DÞÞUTvi ¼

UDðI − DÞk~v i ! 0 as m!1
(8) 

where ~v i ¼ UTvi: We have in particular that 
kUDðI − DÞk~v ik2 decreases monotonically to 0, therefore 
for every fixed d > 0, 9�i 2 N such that 
kvðkÞi − vðkþ1Þ

i k2 < d, 8kP�i:

The present work utilizes MFIF to decompose the 
selected channel subset into five components 
ðCMP1, CMP2, :::, CMP5Þ: Figure 2 shows one grasp MI trial 
of participant S03 and its decomposed components for the 
channel subset C3, Cz, and C4 using MFIF.

3.3. Feature extraction from the decomposed 
components

Information potential is evaluated from the decomposed 
EEG components. IP evaluates Renyi’s quadratic entropy 
using a nonparametric kernel estimator. Consider p(z) be 
the continuous probability density function (PDF) in inter-
val [0, 1] (Principe et al., 2010). The integrated probability 
is given as:

pm, l ¼

ððlþ1Þ=m

l=m
pðzÞdz, l ¼ 0, 1, :::, ðm − 1Þ (9) 

and by describing discrete mass function Pm ¼ fpm, lg, it 
can be shown that:

HaðZÞ ¼ lim
m!1

Ia Pmð Þ − log m
� �

¼
1

1 − a
log

ð

paðzÞdz (10) 

The (10) can also be written using an expectation oper-
ator as:

HaðZÞ¢
1

1 − a
log

ð1

−1
pa

ZðzÞdz ¼
1

1 − a
log EZ pa−1

Z ðZÞ
� �

(11) 

Using the sample mean to approximate the expectation 
operator, as is common in density estimation (Silverman, 
2018), we get

HaðZÞ � ĤaðZÞ ¼
1

1 − a
log

1
L

XL

x¼1
pa−1

Z zxð Þ (12) 

By using an arbitrary kernel function jcð:Þ, the kernel 
(Parzen) estimate of PDF (Parzen, 1962) is given as:

p̂ZðzÞ ¼
1

Lc

XL

y¼1
j

z − zy

c

� �

(13) 

Substitute the Parzen window estimator of (13) in (12), 
we acquire a nonparametric kernel estimator as:

ĤaðZÞ ¼
1

1 − a
log

1
L

XL

x¼1

1
L

XL

y¼1
jc zx − zyð Þ

0

@

1

A

a−1

¼
1

1 − a
log V̂ a, cðZÞ
� �

(14) 
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where zx and zy are the xth and yth samples of Z and a is 
the IP estimator. The Kcðzx − zyÞ denotes the Gaussian ker-
nel, and V̂ a, cðZÞ is:

V̂ a, cðZÞ ¼
1
La

XL

x¼1

XL

y¼1
jc zx − zyð Þ

0

@

1

A

a−1

(15) 

For all a � 0, a 6¼ 1, it is a general-purpose estimator 
that may be used to estimate alpha entropy directly from 
samples or to adjust the weights of a learning system based 
on an entropic performance index (Principe et al., 2010). 
The reason why the sample mean approximation is not 
required in IP computation is explained by the situation 
a ¼ 2, which also allows for an intriguing connection 
between information theoretic learning (ITL) and kernel 
learning (Principe et al., 2010). For a random variable Z 
with L number of samples, the IP is given by:

IPðZÞ ¼
1
L2

XL

x¼1

XL

y¼1
Kcðzx − zyÞ (16) 

The IP is calculated for each decomposed component of 
available EEG channels. As each available EEG channel is 
decomposed into five components using MFIF thus five fea-
ture values are obtained for a single EEG channel.

3.4. Feature smoothing using a moving average filter

The feature smoothing is convenient in handling rapid alter-
ation of unprocessed feature values and has been applied in 
EEG signal classification (Duan et al., 2013). In the present 
work, IP features obtained from all trials have been 
smoothed using a moving average filter with a window 
length of five (Duan et al., 2013). Figure 3 shows unpro-
cessed and smoothed IP feature values from CMP2 of 

Figure 2. EEG signals of the participant S03 during grasp motor imagery (in the first row) and its corresponding decomposed components obtained using MFIF (in 
second to sixth row) from the channel subset C3, Cz, and C4.

Figure 3. Feature smoothing of IP feature values computed for CMP 2 of chan-
nel Cz (channel subset C3, P3, Cz, and Pz) in participant S03 during grasp motor 
imagery activity.
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channel Cz (channel subset C3, P3, Cz, and Pz) from par-
ticipant S03 during grasp MI.

3.5. Classification

The classification has been done using quadratic support 
vector machine (q-SVM), cubic support vector machine (c- 
SVM), and k-nearest neighbors (KNNs) classifiers. The 
smoothed feature values are normalized using Z-score nor-
malization before feeding to the classifier. The stratified 
10-fold cross-validation is performed. In each fold, the 
hyperparameters of the classifier are tuned using Bayesian’s 
optimization (Shahriari et al., 2016). The classification per-
formance is recorded using accuracy (ACC), precision 
(PRE), and F1-score (F1). The obtained classification results 
are discussed in the next section.

4. Results

The present work is carried out on MATLAB R2021a in the 
computer with an Intel i5 processor @ 1.6 GHz having 8 GB 
RAM. The highest classification performance in both the 
channel subsets is achieved with the KNN classifier. The 
participant-wise obtained results with the KNN classifier for 
channel subset C3, P3, Cz, and Pz are given in Table 1. The 
participant-wise results with the KNN classifier for channel 
subset C3, Cz, and C4 are given in Table 2. The average val-
ues of ACC, PRE, and F1 of 98.43%, 98.62%, and 98.41%, 
respectively, are achieved for all the considered 10 partici-
pants with channel subset C3, P3, Cz, and Pz. The average 
ACC, PRE, and F1 of 97.43%, 97.68%, and 97.41%, respect-
ively, are achieved with channel subset C3, Cz, and C4. The 
grasp MI in all trails of participants S06, S07, and S09 is 

classified accurately using channel subset C3, P3, Cz, and 
Pz. This shows the efficacy of the proposed methodology. In 
the case of channel subset C3, Cz, and C4, the participant 
S12 shows the highest classification results with ACC, PRE, 
and F1 of 99.38%, 99.44%, and 99.37%, respectively.

The results with q-SVM and c-SVM classifiers along with 
the KNN classifier are given in Table 3. The q-SVM and c- 
SVM classifiers are able to provide a maximum ACC of 
90.60% and 91.47%, respectively, with the channel subset 
C3, P3, Cz, and Pz, which is lesser than ACC obtained using 
KNN classifier. Table 3 explains that better grasp MI detec-
tion is possible with the KNN classifier using the proposed 
methodology than with q-SVM and c-SVM classifiers. The 
obtained results also deduce that the four channel subset 

Table 1. Participant-wise results using proposed method with KNN classifier 
and channel subset C3, P3, Cz, and Pz.

Participant ACC (%) PRE (%) F1 (%)

S02 98.67 98.66 98.66
S03 98.75 98.89 98.75
S04 98.13 98.33 98.12
S05 96.25 96.81 96.17
S06 100 100 100
S07 100 100 100
S08 99.38 99.44 99.37
S09 100 100 100
S10 95.63 96.22 95.59
S12 97.50 97.89 97.48
Mean 98.43 98.62 98.41

Table 2. Participant-wise results using proposed method with KNN classifier 
and channel subset C3, Cz, and C4.

Participant ACC (%) PRE (%) F1 (%)

S02 99.33 99.38 99.33
S03 98.13 98.33 98.12
S04 97.50 97.89 97.48
S05 91.88 92.25 91.83
S06 98.75 98.89 98.75
S07 98.13 98.44 98.10
S08 98.75 98.89 98.75
S09 98.13 98.17 98.12
S10 94.38 95.14 94.29
S12 99.38 99.44 99.37
Mean 97.43 97.68 97.41

Table 3. The mean classification results obtained using proposed method 
with subject specific q-SVM, c-SVM, and KNN classifiers.

Channel subset Classifier ACC (%) PRE (%) F1 (%)

C3, P3, Cz, and Pz q-SVM 90.60 91.31 90.54
c-SVM 91.47 92.26 91.40
KNN 98.43 98.62 98.41

C3, Cz, and C4 q-SVM 89.93 90.18 89.24
c-SVM 89.81 90.63 89.70
KNN 97.43 97.68 97.41

Table 4. Cross-subject classification results obtained using proposed method 
with q-SVM, c-SVM, and KNN classifiers.

Channel subset Classifier ACC (%) PRE (%) F1 (%)

C3, P3, Cz, and Pz q-SVM 77.23 77.37 77.20
c-SVM 85.03 85.13 85.02
KNN 98.25 98.31 98.24

C3, Cz, and C4 q-SVM 69.37 69.69 69.25
c-SVM 78.68 78.84 78.61
KNN 95.46 95.47 95.46

Table 5. Comparison performance for cross-subject classification results 
obtained using MFIF and FA-MVEMD with KNN classifier.

Channel subset Methods ACC (%) PRE (%) F1 (%)

C3, P3, Cz, and Pz MFIF 98.25 98.31 98.24
FA-MVEMD 96.50 97.40 96.50

C3, Cz, and C4 MFIF 95.46 95.47 95.46
FA-MVEMD 93.40 93.50 93.40

Figure 4. Number of features versus accuracy plot for different channel subsets 
for cross-subject classification using KNN classifier.
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yields more ACC for the right hand grasp MI detection 
than the three channel subset but it requires more 
computation.

Table 4 shows cross-subject classification results obtained 
using proposed method with q-SVM, c-SVM, and KNN 
classifiers. In this experiment, the data of all 10 participants 
are combined for MI and rest state and sorted them ran-
domly. For training and testing the model, the data are split-
ted into 90:10 ratio. It is observed that the channel subset 
C3, P3, Cz, and Pz achieved the higher accuracy of 98.25% 
for KNN classifier than the C3, Cz, and C4 channel subset. 
We have further analyzed the comparison performance for 
cross-subject classification results obtained using MFIF and 
fast and adaptive multivariate empirical mode decompos-
ition (FA-MVEMD) (Thirumalaisamy & Ansell, 2018) as 
shown in Table 5. It can be observed that MFIF based meth-
odology gives an accuracy of 98.25%, which is better than 
the FA-MVEMD based methodology with an accuracy of 
96.50% for cross-subject classification in the case of the 
channel subset C3, P3, Cz, and Pz. It can also be seen that 
MFIF performs better for BCI systems than EMD based 
techniques. Figure 4 shows accuracy versus feature plot of 
C3, P3, Cz, and Pz channel subset and C3, Cz, and C4 chan-
nel subset for cross-subject classification using KNN classi-
fier. The plot illustrates that for four channel subset and 
three channel subset the highest accuracy is achieved using 
18 and 15 features, respectively.

Moreover, performance of the proposed method is com-
pared with other existing methods as shown in Table 6. In 
Cho et al. (2022), authors achieved accuracy of 86% using 
CNN-BLSTM for power grasp and precision grasp MI clas-
sification. Further, using CSP based feature extraction in 
Peterson et al. (2020), the accuracy came out to be 83.80% 
for grasp MI identification. In Bressan et al. (2021), the 
ICA and CNN are computed to achieve the accuracy of 
70% to identify rest, touch, and grasp based MI. Here, it is 
concluded that differentiation of touch and grasp MI is 
more difficult than rest state. Also, in Fifer et al. (2014), 
an LDA-based method is suggested for reach and grasp 
identification, which acquired 96% accuracy. On comparing 
the above existing methods with the proposed method, it is 
observed that the proposed method outperforms the exist-
ing methods with the accuracy of 98.25%, using 18 features 
calculation. The proposed method uses MFIF, which is fast 
and computation of 18 features does not take much time. 
Therefore, the proposed method can be utilized for a real 
time device development. However, there is a scope to 
identify the type of grasp MI and in future, a device can 
be developed for increased number of grasp MI 
identification.

5. Conclusions

In this article, the MFIF-based approach for grasp MI iden-
tification is proposed. The proposed approach utilizes only a 
few of the available channels based on the neurophysiology 
of the brain and still provides a better grasp MI detection 
performance. The available EEG trials from the selected 
channels are decomposed into five components and features 
using IP are obtained from the decomposed components. 
The proposed methodology has been tested on support vec-
tor machines and KNN classifiers. The average classification 
accuracy for multiple subjects came out to be 98.43%, which 
is achieved with the KNN classifier using four EEG channels 
whereas the cross subject classification accuracy is 98.25%. 
In future, the proposed approach can be studied to restore 
the grasp functionality through EEG signals and for the 
identification of other grasp MI signals.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Shivam Sharma http://orcid.org/0000-0003-2770-0966 
Rishi Raj Sharma http://orcid.org/0000-0001-6835-003X 

References

Abdullah, Faye, I., & Islam, M. R. (2022). EEG channel selection tech-
niques in motor imagery applications: A review and new perspec-
tives. Bioengineering, 9(12), 726. https://doi.org/10.3390/ 
bioengineering9120726

Bressan, G., Cisotto, G., M€uller-Putz, G. R., & Wriessnegger, S. C. 
(2021). Deep learning-based classification of fine hand movements 
from low frequency EEG. Future Internet, 13(5), 103. https://doi.org/ 
10.3390/fi13050103

Cho, J.-H., Jeong, J.-H., & Lee, S.-W. (2020). Decoding of grasp 
motions from EEG signals based on a novel data augmentation 
strategy. 2020 42nd Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC) (pp. 3015–3018). 
IEEE.

Cho, J.-H., Jeong, J.-H., & Lee, S.-W. (2022). NeuroGrasp: Real-time 
EEG classification of high-level motor imagery tasks using a dual- 
stage deep learning framework. IEEE Transactions on Cybernetics, 
52(12), 13279–13292. https://doi.org/10.1109/TCYB.2021.3122969

Cho, J.-H., Jeong, J.-R., Kim, D.-J., & Lee, S.-W. (2020). A novel 
approach to classify natural grasp actions by estimating muscle 
activity patterns from EEG signals. 2020 8th International Winter 
Conference on Brain–Computer Interface (BCI) (pp. 1–4). IEEE. 
https://doi.org/10.1109/BCI48061.2020.9061627

Chu, Y., Zhao, X., Zou, Y., Xu, W., Song, G., Han, J., & Zhao, Y. 
(2020). Decoding multiclass motor imagery EEG from the same 
upper limb by combining Riemannian geometry features and partial 
least squares regression. Journal of Neural Engineering, 17(4), 
046029. https://doi.org/10.1088/1741-2552/aba7cd

Table 6. Comparative performance metrics using proposed and existing methods.

Authors Dataset Methods used ACC (%) PRE (%) F1 (%)

Proposed method MI-OpenBCI MFIF, information potential based features 98.25 98.31 98.24
Cho et al. (2022) NeuroGrasp CNN-BLSTM 86.00 – –
Peterson et al. (2020) MI-OpenBCI CSP based feature extraction 83.80 – –
Bressan et al. (2021) MoreGrasp ICA and CNN 70 70 –
Fifer et al. (2014) Neuro Port based reach and grasp LDA 96 – –

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 7

https://doi.org/10.3390/bioengineering9120726
https://doi.org/10.3390/bioengineering9120726
https://doi.org/10.3390/fi13050103
https://doi.org/10.3390/fi13050103
https://doi.org/10.1109/TCYB.2021.3122969
https://doi.org/10.1109/BCI48061.2020.9061627
https://doi.org/10.1088/1741-2552/aba7cd


Cicone, A., & Pellegrino, E. (2022). Multivariate fast iterative filtering 
for the decomposition of nonstationary signals. IEEE Transactions 
on Signal Processing, 70, 1521–1531. https://doi.org/10.1109/TSP. 
2022.3157482

Cicone, A., & Zhou, H. (2021). Numerical analysis for iterative 
filtering with new efficient implementations based on FFT. 
Numerische Mathematik, 147(1), 1–28. https://doi.org/10.1007/ 
s00211-020-01165-5

Duan, R.-N., Zhu, J.-Y., & Lu, B.-L. (2013). Differential entropy feature 
for EEG-based emotion classification. 2013 6th International IEEE/ 
EMBS Conference on Neural Engineering (NER) (pp. 81–84). IEEE. 
https://doi.org/10.1109/NER.2013.6695876

Fifer, M. S., Hotson, G., Wester, B. A., McMullen, D. P., Wang, Y., 
Johannes, M. S., Katyal, K. D., Helder, J. B., Para, M. P., Vogelstein, 
R. J., Anderson, W. S., Thakor, N. V., & Crone, N. E. (2014). 
Simultaneous neural control of simple reaching and grasping with 
the modular prosthetic limb using intracranial EEG. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 
22(3), 695–705. https://doi.org/10.1109/TNSRE.2013.2286955

Gaur, P., Chowdhury, A., McCreadie, K., Pachori, R. B., & Wang, H. 
(2022). Logistic regression with tangent space-based cross-subject 
learning for enhancing motor imagery classification. IEEE 
Transactions on Cognitive and Developmental Systems, 14(3), 1188– 
1197. https://doi.org/10.1109/TCDS.2021.3099988

Gazagnaire, J., & Beaujean, P.-P. (2021). Multivariate fast iterative fil-
tering and intrinsic mode functions for time delay estimation 
applied to motion estimation for synthetic aperture sonar imagery. 
Oceans 2021: San Diego–Porto (pp. 1–9). IEEE.

Hazrati, M. K., & Erfanian, A. (2010). An online EEG-based brain– 
computer interface for controlling hand grasp using an adaptive 
probabilistic neural network. Medical Engineering & Physics, 32(7), 
730–739. https://doi.org/10.1016/j.medengphy.2010.04.016

Horki, P., Solis-Escalante, T., Neuper, C., & M€uller-Putz, G. (2011). 
Combined motor imagery and SSVEP based BCI control of a 2 DoF 
artificial upper limb. Medical & Biological Engineering & Computing, 
49(5), 567–577. https://doi.org/10.1007/s11517-011-0750-2

Jain, A., & Kumar, L. (2022). PreMovNet: Premovement EEG-based 
hand kinematics estimation for grasp-and-lift task. IEEE Sensors 
Letters, 6(7), 1–4. https://doi.org/10.1109/LSENS.2022.3183284

Jeon, Y., Nam, C. S., Kim, Y.-J., & Whang, M. C. (2011). Event-related 
(de)synchronization (ERD/ERS) during motor imagery tasks: 
Implications for brain–computer interfaces. International Journal of 
Industrial Ergonomics, 41(5), 428–436. https://doi.org/10.1016/j. 
ergon.2011.03.005

Kanuparthi, B., & Turlapaty, A. C. (2022). A hierarchical approach for 
decoding human reach-and-grasp activities based on EEG signals. 
2022 IEEE International Conference on Signal Processing and 
Communications (SPCOM) (pp. 1–5). IEEE. https://doi.org/10.1109/ 
SPCOM55316.2022.9840794

King, B. J., Read, G. J., & Salmon, P. M. (2022). The risks associated 
with the use of brain–computer interfaces: A systematic review. 
International Journal of Human–Computer Interaction, 14, 1–18. 
https://doi.org/10.1080/10447318.2022.2111041

Lange, G., Low, C. Y., Johar, K., Hanapiah, F. A., & Kamaruzaman, F. 
(2016). Classification of electroencephalogram data from hand grasp 
and release movements for BCI controlled prosthesis. Procedia 
Technology, 26, 374–381. https://doi.org/10.1016/j.protcy.2016.08.048

Lee, S.-B., Kim, H.-J., Kim, H., Jeong, J.-H., Lee, S.-W., & Kim, D.-J. 
(2019). Comparative analysis of features extracted from EEG spatial, 
spectral and temporal domains for binary and multiclass motor 
imagery classification. Information Sciences, 502, 190–200. https:// 
doi.org/10.1016/j.ins.2019.06.008

Li, H., Ding, M., Zhang, R., & Xiu, C. (2022). Motor imagery EEG clas-
sification algorithm based on CNN-LSTM feature fusion network. 
Biomedical Signal Processing and Control, 72, 103342. https://doi. 
org/10.1016/j.bspc.2021.103342

Lin, B.-S., Pan, J.-S., Chu, T.-Y., & Lin, B.-S. (2016). Development 
of a wearable motor-imagery-based brain–computer interface. 
Journal of Medical Systems, 40(3), 71. https://doi.org/10.1007/s10916- 
015-0429-6

Lin, L., Wang, Y., & Zhou, H. (2009). Iterative filtering as an alterna-
tive algorithm for empirical mode decomposition. Advances in 
Adaptive Data Analysis, 1(4), 543–560. https://doi.org/10.1142/ 
S179353690900028X

Ma, X., Qiu, S., Wei, W., Wang, S., & He, H. (2020). Deep channel- 
correlation network for motor imagery decoding from the same 
limb. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 28(1), 297–306. https://doi.org/10.1109/TNSRE.2019. 
2953121

Mahmoudi, B., Erfanian, A. (2002). Single-channel EEG-based pros-
thetic hand grasp control for amputee subjects. Proceedings of the 
Second Joint 24th Annual Conference and the Annual Fall Meeting of 
the Biomedical Engineering Society. Engineering in Medicine and 
Biology (pp. 2406–2407). IEEE.

Mwata-Velu, T., Avina-Cervantes, J. G., Cruz-Duarte, J. M., Rostro- 
Gonzalez, H., & Ruiz-Pinales, J. (2021). Imaginary finger movements 
decoding using empirical mode decomposition and a stacked 
BiLSTM architecture. Mathematics, 9(24), 3297. https://doi.org/10. 
3390/math9243297

Parzen, E. (1962). On estimation of a probability density function and 
mode. Annals of Mathematical Statistics, 33(3), 1065–1076. https:// 
doi.org/10.1214/aoms/1177704472

Peterson, V., Galv�an, C., Hern�andez, H., & Spies, R. (2020). A feasibil-
ity study of a complete low-cost consumer-grade brain–computer 
interface system. Heliyon, 6(4), e03425. https://doi.org/10.1016/j.heli-
yon.2020.e03709

Peterson, V., Galv�an, C., Hern�andez, H., Saavedra, M. P., & Spies, R. 
(2022). A motor imagery vs. rest dataset with low-cost consumer 
grade EEG hardware. Data in Brief, 42, 108225. https://doi.org/10. 
1016/j.dib.2022.108225

Principe, J. C., Xu, D., & Erdogmuns, D. (2010). Renyi’s entropy, diver-
gence and their nonparametric estimators. In J. C. Principe (Eds.), 
Information theoretic learning: Renyi’s entropy and kernel perspectives 
(pp. 47–102). Springer.

Ramadhan, M. M., Wijaya, S. K., & Prajitno, P. (2019). Classification 
of EEG signals from motor imagery of hand grasp movement based 
on neural network approach. 2019 IEEE International Conference on 
Signals and Systems (ICSigSys) (pp. 92–96). IEEE. https://doi.org/10. 
1109/ICSIGSYS.2019.8811017

Rasheed, S., & Mumtaz, W. (2021). Classification of hand-grasp move-
ments of stroke patients using EEG data. 2021 International 
Conference on Artificial Intelligence (ICAI) (pp. 86–90). IEEE. 
https://doi.org/10.1109/ICAI52203.2021.9445231

Roy, R., Sikdar, D., Mahadevappa, M., & Kumar, C. (2017). EEG based 
motor imagery study of time domain features for classification of 
power and precision hand grasps. 2017 8th International IEEE/ 
EMBS Conference on Neural Engineering (NER) (pp. 440–443). IEEE. 
https://doi.org/10.1109/NER.2017.8008384

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. 
(2016). Taking the human out of the loop: A review of Bayesian 
optimization. Proceedings of the IEEE, 104(1), 148–175. https://doi. 
org/10.1109/JPROC.2015.2494218

Sharma, R. R., Kumar, M., & Pachori, R. B. (2020). Classification of 
EMG signals using eigenvalue decomposition-based time–frequency 
representation. In N. Sriraam (Ed.), Biomedical and clinical engineer-
ing for healthcare advancement (pp. 96–118). IGI Global.

Sharma, R. R., Varshney, P., Pachori, R. B., & Vishvakarma, S. K. 
(2018). Automated system for epileptic EEG detection using iterative 
filtering. IEEE Sensors Letters, 2(4), 1–4. https://doi.org/10.1109/ 
LSENS.2018.2882622

Sharma, R., Sahu, S. S., Upadhyay, A., Sharma, R. R., & Sahoo, A. K. 
(2021). Sleep stage classification using DWT and dispersion entropy 
applied on EEG signals. In V. Bajaj, G. R. Sinha (Eds.), Computer- 
aided design and diagnosis methods for biomedical applications (pp. 
35–56). CRC Press.

Sharma, S., & Sharma, R. R. (2022). Variational mode decomposition- 
based finger flexion detection using ECoG signals. In V. Bajaj, G. R. 
Sinha (Eds.), Artificial intelligence-based brain–computer interface 
(pp. 261–282). Elsevier.

8 S. SHARMA ET AL.

https://doi.org/10.1109/TSP.2022.3157482
https://doi.org/10.1109/TSP.2022.3157482
https://doi.org/10.1007/s00211-020-01165-5
https://doi.org/10.1007/s00211-020-01165-5
https://doi.org/10.1109/NER.2013.6695876
https://doi.org/10.1109/TNSRE.2013.2286955
https://doi.org/10.1109/TCDS.2021.3099988
https://doi.org/10.1016/j.medengphy.2010.04.016
https://doi.org/10.1007/s11517-011-0750-2
https://doi.org/10.1109/LSENS.2022.3183284
https://doi.org/10.1016/j.ergon.2011.03.005
https://doi.org/10.1016/j.ergon.2011.03.005
https://doi.org/10.1109/SPCOM55316.2022.9840794
https://doi.org/10.1109/SPCOM55316.2022.9840794
https://doi.org/10.1080/10447318.2022.2111041
https://doi.org/10.1016/j.protcy.2016.08.048
https://doi.org/10.1016/j.ins.2019.06.008
https://doi.org/10.1016/j.ins.2019.06.008
https://doi.org/10.1016/j.bspc.2021.103342
https://doi.org/10.1016/j.bspc.2021.103342
https://doi.org/10.1007/s10916-015-0429-6
https://doi.org/10.1007/s10916-015-0429-6
https://doi.org/10.1142/S179353690900028X
https://doi.org/10.1142/S179353690900028X
https://doi.org/10.1109/TNSRE.2019.2953121
https://doi.org/10.1109/TNSRE.2019.2953121
https://doi.org/10.3390/math9243297
https://doi.org/10.3390/math9243297
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1016/j.heliyon.2020.e03709
https://doi.org/10.1016/j.heliyon.2020.e03709
https://doi.org/10.1016/j.dib.2022.108225
https://doi.org/10.1016/j.dib.2022.108225
https://doi.org/10.1109/ICSIGSYS.2019.8811017
https://doi.org/10.1109/ICSIGSYS.2019.8811017
https://doi.org/10.1109/ICAI52203.2021.9445231
https://doi.org/10.1109/NER.2017.8008384
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/LSENS.2018.2882622
https://doi.org/10.1109/LSENS.2018.2882622


Silverman, B. W. (2018). Density estimation for statistics and data ana-
lysis. Routledge.

Tavakolan, M., Yong, X., Zhang, X., & Menon, C. (2016). Classification 
scheme for arm motor imagery. Journal of Medical and Biological 
Engineering, 36(1), 12–21. https://doi.org/10.1007/s40846-016-0102-7

Thirumalaisamy, M. R., & Ansell, P. J. (2018). Fast and adaptive empir-
ical mode decomposition for multidimensional, multivariate signals. 
IEEE Signal Processing Letters, 25(10), 1550–1554. https://doi.org/10. 
1109/LSP.2018.2867335

Tiwari, A., & Chaturvedi, A. (2021). A novel channel selection 
method for BCI classification using dynamic channel relevance. 
IEEE Access, 9, 126698–126716. https://doi.org/10.1109/ACCESS. 
2021.3110882

Tobing, T., Prajitno, P., & Wijaya, S. K. (2017). Classification of right- 
hand grasp movement based on EMOTIV Epocþ. AIP Conference 
Proceedings (p. 030069). AIP Publishing LLC.

Urbar, J., Cicone, A., Spogli, L., Cesaroni, C., & Alfonsi, L. (2022). 
Intrinsic mode cross correlation: A novel technique to identify 
scale-dependent lags between two signals and its application to 
ionospheric science. IEEE Geoscience and Remote Sensing Letters, 19, 
1–3. https://doi.org/10.1109/LGRS.2021.3122108

Urig€uen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal— 
State-of-the-art and guidelines. Journal of Neural Engineering, 12(3), 
031001. https://doi.org/10.1088/1741-2560/12/3/031001

Vasiljevic, G. A. M., & De Miranda, L. C. (2020). Brain–computer inter-
face games based on consumer-grade EEG devices: A systematic lit-
erature review. International Journal of Human–Computer Interaction, 
36(2), 105–142. https://doi.org/10.1080/10447318.2019.1612213

Veres, M., Moussa, M., & Taylor, G. W. (2017). Modeling grasp motor 
imagery through deep conditional generative models. IEEE Robotics 

and Automation Letters, 2(2), 757–764. https://doi.org/10.1109/LRA. 
2017.2651945

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., 
& Vaughan, T. M. (2002). Brain–computer interfaces for 
communication and control. Clinical Neurophysiology, 113(6), 767– 
791. https://doi.org/10.1016/s1388-2457(02)00057-3

Xu, F., Zhou, W., Zhen, Y., & Yuan, Q. (2014). Classification of motor 
imagery tasks for electrocorticogram based brain–computer inter-
face. Biomedical Engineering Letters, 4(2), 149–157. https://doi.org/ 
10.1007/s13534-014-0128-0 

About the authors

Shivam Sharma is currently pursuing PhD degree from the DIAT, 
DRDO, Pune, India. He received his MTech degree from the DIAT, 
DRDO, Pune, India in Signal Processing and Communication. His area 
of research includes signal processing, machine learning, biomedical 
signals like EEG, ECoG, EMG, human computer interaction, etc.

Aakash Shedsale received MTech degree in Electronics and 
Communication Engineering from Defence Institute of Advanced 
Technology, Pune. Presently, he is working towards his PhD at the 
Department of Electrical Communication Engineering at Indian 
Institute of Science, Bangalore, India.

Rishi Raj Sharma completed MTech from ABV-IIITM, Gwalior, India 
and PhD from IIT-Indore, India, respectively. Currently, he is an 
Assistant professor at DIAT, (DRDO), India. His area of research cover 
signal processing, medical robotics, BCI, HCI, electronic-warfare, UAV, 
and automotive-radar. He received IET Premium Award-2019 and 
2020 from IET-UK.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 9

https://doi.org/10.1007/s40846-016-0102-7
https://doi.org/10.1109/LSP.2018.2867335
https://doi.org/10.1109/LSP.2018.2867335
https://doi.org/10.1109/ACCESS.2021.3110882
https://doi.org/10.1109/ACCESS.2021.3110882
https://doi.org/10.1109/LGRS.2021.3122108
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1080/10447318.2019.1612213
https://doi.org/10.1109/LRA.2017.2651945
https://doi.org/10.1109/LRA.2017.2651945
https://doi.org/10.1016/s1388-2457(02)00057-3
https://doi.org/10.1007/s13534-014-0128-0
https://doi.org/10.1007/s13534-014-0128-0

	Multivariate Fast Iterative Filtering Based Automated System for Grasp Motor Imagery Identification Using EEG Signals
	Abstract
	Introduction
	Dataset description
	Methodology
	EEG data preprocessing
	Decomposition of the selected channels using MFIF
	Feature extraction from the decomposed components
	Feature smoothing using a moving average filter
	Classification

	Results
	Conclusions
	Disclosure statement
	Orcid
	References


